home *** CD-ROM | disk | FTP | other *** search
- /* Target-machine dependent code for Motorola 88000 series, for GDB.
- Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
-
- This file is part of GDB.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
-
- #include "defs.h"
- #include "frame.h"
- #include "inferior.h"
- #include "value.h"
-
- #ifdef USG
- #include <sys/types.h>
- #endif
-
- #include <sys/param.h>
- #include <sys/dir.h>
- #include <signal.h>
- #include "gdbcore.h"
- #include <sys/user.h>
- #ifndef USER /* added to support BCS ptrace_user */
-
- #define USER ptrace_user
- #endif
- #include <sys/ioctl.h>
- #include <fcntl.h>
-
- #include <sys/file.h>
- #include <sys/stat.h>
-
- #include "symtab.h"
- #include "setjmp.h"
- #include "value.h"
-
- void frame_find_saved_regs ();
-
-
- /* Given a GDB frame, determine the address of the calling function's frame.
- This will be used to create a new GDB frame struct, and then
- INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
-
- For us, the frame address is its stack pointer value, so we look up
- the function prologue to determine the caller's sp value, and return it. */
-
- FRAME_ADDR
- frame_chain (thisframe)
- FRAME thisframe;
- {
-
- frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
- /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
- the ADDRESS, of SP_REGNUM. It also depends on the cache of
- frame_find_saved_regs results. */
- if (thisframe->fsr->regs[SP_REGNUM])
- return thisframe->fsr->regs[SP_REGNUM];
- else
- return thisframe->frame; /* Leaf fn -- next frame up has same SP. */
- }
-
- int
- frameless_function_invocation (frame)
- FRAME frame;
- {
-
- frame_find_saved_regs (frame, (struct frame_saved_regs *) 0);
- /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
- the ADDRESS, of SP_REGNUM. It also depends on the cache of
- frame_find_saved_regs results. */
- if (frame->fsr->regs[SP_REGNUM])
- return 0; /* Frameful -- return addr saved somewhere */
- else
- return 1; /* Frameless -- no saved return address */
- }
-
- int
- frame_chain_valid (chain, thisframe)
- CORE_ADDR chain;
- struct frame_info *thisframe;
- {
- return (chain != 0
- && !inside_entry_file (FRAME_SAVED_PC (thisframe)));
- }
-
- void
- init_extra_frame_info (fromleaf, fi)
- int fromleaf;
- struct frame_info *fi;
- {
- fi->fsr = 0; /* Not yet allocated */
- fi->args_pointer = 0; /* Unknown */
- fi->locals_pointer = 0; /* Unknown */
- }
-
- /* Examine an m88k function prologue, recording the addresses at which
- registers are saved explicitly by the prologue code, and returning
- the address of the first instruction after the prologue (but not
- after the instruction at address LIMIT, as explained below).
-
- LIMIT places an upper bound on addresses of the instructions to be
- examined. If the prologue code scan reaches LIMIT, the scan is
- aborted and LIMIT is returned. This is used, when examining the
- prologue for the current frame, to keep examine_prologue () from
- claiming that a given register has been saved when in fact the
- instruction that saves it has not yet been executed. LIMIT is used
- at other times to stop the scan when we hit code after the true
- function prologue (e.g. for the first source line) which might
- otherwise be mistaken for function prologue.
-
- The format of the function prologue matched by this routine is
- derived from examination of the source to gcc 1.95, particularly
- the routine output_prologue () in config/out-m88k.c.
-
- subu r31,r31,n # stack pointer update
-
- (st rn,r31,offset)? # save incoming regs
- (st.d rn,r31,offset)?
-
- (addu r30,r31,n)? # frame pointer update
-
- (pic sequence)? # PIC code prologue
-
- (or rn,rm,0)? # Move parameters to other regs
- */
-
- /* Macros for extracting fields from instructions. */
-
- #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
- #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
-
- /* Prologue code that handles position-independent-code setup. */
-
- struct pic_prologue_code {
- unsigned long insn, mask;
- };
-
- static struct pic_prologue_code pic_prologue_code [] = {
- /* FIXME -- until this is translated to hex, we won't match it... */
- 0xffffffff, 0,
- /* or r10,r1,0 (if not saved) */
- /* bsr.n LabN */
- /* or.u r25,r0,const */
- /*LabN: or r25,r25,const2 */
- /* addu r25,r25,1 */
- /* or r1,r10,0 (if not saved) */
- };
-
- /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
- is not the address of a valid instruction, the address of the next
- instruction beyond ADDR otherwise. *PWORD1 receives the first word
- of the instruction. PWORD2 is ignored -- a remnant of the original
- i960 version. */
-
- #define NEXT_PROLOGUE_INSN(addr, lim, pword1, pword2) \
- (((addr) < (lim)) ? next_insn (addr, pword1) : 0)
-
- /* Read the m88k instruction at 'memaddr' and return the address of
- the next instruction after that, or 0 if 'memaddr' is not the
- address of a valid instruction. The instruction
- is stored at 'pword1'. */
-
- CORE_ADDR
- next_insn (memaddr, pword1)
- unsigned long *pword1;
- CORE_ADDR memaddr;
- {
- unsigned long buf[1];
-
- read_memory (memaddr, buf, sizeof (buf));
- *pword1 = buf[0];
- SWAP_TARGET_AND_HOST (pword1, sizeof (long));
-
- return memaddr + 4;
- }
-
- /* Read a register from frames called by us (or from the hardware regs). */
-
- int
- read_next_frame_reg(fi, regno)
- FRAME fi;
- int regno;
- {
- for (; fi; fi = fi->next) {
- if (regno == SP_REGNUM) return fi->frame;
- else if (fi->fsr->regs[regno])
- return read_memory_integer(fi->fsr->regs[regno], 4);
- }
- return read_register(regno);
- }
-
- /* Examine the prologue of a function. `ip' points to the first instruction.
- `limit' is the limit of the prologue (e.g. the addr of the first
- linenumber, or perhaps the program counter if we're stepping through).
- `frame_sp' is the stack pointer value in use in this frame.
- `fsr' is a pointer to a frame_saved_regs structure into which we put
- info about the registers saved by this frame.
- `fi' is a struct frame_info pointer; we fill in various fields in it
- to reflect the offsets of the arg pointer and the locals pointer. */
-
- static CORE_ADDR
- examine_prologue (ip, limit, frame_sp, fsr, fi)
- register CORE_ADDR ip;
- register CORE_ADDR limit;
- FRAME_ADDR frame_sp;
- struct frame_saved_regs *fsr;
- struct frame_info *fi;
- {
- register CORE_ADDR next_ip;
- register int src;
- register struct pic_prologue_code *pcode;
- unsigned int insn1, insn2;
- int size, offset;
- char must_adjust[32]; /* If set, must adjust offsets in fsr */
- int sp_offset = -1; /* -1 means not set (valid must be mult of 8) */
- int fp_offset = -1; /* -1 means not set */
- CORE_ADDR frame_fp;
-
- bzero (must_adjust, sizeof (must_adjust));
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
-
- /* Accept move of incoming registers to other registers, using
- "or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0".
- We don't have to worry about walking into the first lines of code,
- since the first line number will stop us (assuming we have symbols).
- What we have actually seen is "or r10,r0,r12". */
-
- #define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */
- #define OR_MOVE_MASK 0xF800FFFF
- #define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */
- #define OR_REG_MOVE1_MASK 0xFC1FFFE0
- #define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */
- #define OR_REG_MOVE2_MASK 0xFC00FFFF
- while (next_ip &&
- ((insn1 & OR_MOVE_MASK) == OR_MOVE_INSN ||
- (insn1 & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN ||
- (insn1 & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN
- )
- )
- {
- /* We don't care what moves to where. The result of the moves
- has already been reflected in what the compiler tells us is the
- location of these parameters. */
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
- }
-
- /* Accept an optional "subu sp,sp,n" to set up the stack pointer. */
-
- #define SUBU_SP_INSN 0x67ff0000
- #define SUBU_SP_MASK 0xffff0007 /* Note offset must be mult. of 8 */
- #define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
- if (next_ip &&
- ((insn1 & SUBU_SP_MASK) == SUBU_SP_INSN)) /* subu r31, r31, N */
- {
- sp_offset = -SUBU_OFFSET (insn1);
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
- }
-
- /* The function must start with a stack-pointer adjustment, or
- we don't know WHAT'S going on... */
- if (sp_offset == -1)
- return ip;
-
- /* Accept zero or more instances of "st rx,sp,n" or "st.d rx,sp,n".
- This may cause us to mistake the copying of a register
- parameter to the frame for the saving of a callee-saved
- register, but that can't be helped, since with the
- "-fcall-saved" flag, any register can be made callee-saved.
- This probably doesn't matter, since the ``saved'' caller's values of
- non-callee-saved registers are not relevant anyway. */
-
- #define STD_STACK_INSN 0x201f0000
- #define STD_STACK_MASK 0xfc1f0000
- #define ST_STACK_INSN 0x241f0000
- #define ST_STACK_MASK 0xfc1f0000
- #define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
- #define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
-
- while (next_ip)
- {
- if ((insn1 & ST_STACK_MASK) == ST_STACK_INSN)
- size = 1;
- else if ((insn1 & STD_STACK_MASK) == STD_STACK_INSN)
- size = 2;
- else
- break;
-
- src = ST_SRC (insn1);
- offset = ST_OFFSET (insn1);
- while (size--)
- {
- must_adjust[src] = 1;
- fsr->regs[src++] = offset; /* Will be adjusted later */
- offset += 4;
- }
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
- }
-
- /* Accept an optional "addu r30,r31,n" to set up the frame pointer. */
-
- #define ADDU_FP_INSN 0x63df0000
- #define ADDU_FP_MASK 0xffff0000
- #define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
- if (next_ip &&
- ((insn1 & ADDU_FP_MASK) == ADDU_FP_INSN)) /* addu r30, r31, N */
- {
- fp_offset = ADDU_OFFSET (insn1);
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
- }
-
- /* Accept the PIC prologue code if present. */
-
- pcode = pic_prologue_code;
- size = sizeof (pic_prologue_code) / sizeof (*pic_prologue_code);
- /* If return addr is saved, we don't use first or last insn of PICstuff. */
- if (fsr->regs[SRP_REGNUM]) {
- pcode++;
- size-=2;
- }
-
- while (size-- && next_ip && (pcode->insn == (pcode->mask & insn1)))
- {
- pcode++;
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
- }
-
- /* Accept moves of parameter registers to other registers, using
- "or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0".
- We don't have to worry about walking into the first lines of code,
- since the first line number will stop us (assuming we have symbols).
- What gcc actually seems to produce is "or rd,r0,rs". */
-
- #define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */
- #define OR_MOVE_MASK 0xF800FFFF
- #define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */
- #define OR_REG_MOVE1_MASK 0xFC1FFFE0
- #define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */
- #define OR_REG_MOVE2_MASK 0xFC00FFFF
- while (next_ip &&
- ((insn1 & OR_MOVE_MASK) == OR_MOVE_INSN ||
- (insn1 & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN ||
- (insn1 & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN
- )
- )
- {
- /* We don't care what moves to where. The result of the moves
- has already been reflected in what the compiler tells us is the
- location of these parameters. */
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
- }
-
- /* We're done with the prologue. If we don't care about the stack
- frame itself, just return. (Note that fsr->regs has been trashed,
- but the one caller who calls with fi==0 passes a dummy there.) */
-
- if (fi == 0)
- return ip;
-
- /* OK, now we have:
- sp_offset original negative displacement of SP
- fp_offset positive displacement between new SP and new FP, or -1
- fsr->regs[0..31] offset from original SP where reg is stored
- must_adjust[0..31] set if corresp. offset was set
-
- The current SP (frame_sp) might not be the original new SP as set
- by the function prologue, if alloca has been called. This can
- only occur if fp_offset is set, though (the compiler allocates an
- FP when it sees alloca). In that case, we have the FP,
- and can calculate the original new SP from the FP.
-
- Then, we figure out where the arguments and locals are, and
- relocate the offsets in fsr->regs to absolute addresses. */
-
- if (fp_offset != -1) {
- /* We have a frame pointer, so get it, and base our calc's on it. */
- frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, FP_REGNUM);
- frame_sp = frame_fp - fp_offset;
- } else {
- /* We have no frame pointer, therefore frame_sp is still the same value
- as set by prologue. But where is the frame itself? */
- if (must_adjust[SRP_REGNUM]) {
- /* Function header saved SRP (r1), the return address. Frame starts
- 4 bytes down from where it was saved. */
- frame_fp = frame_sp + fsr->regs[SRP_REGNUM] - 4;
- fi->locals_pointer = frame_fp;
- } else {
- /* Function header didn't save SRP (r1), so we are in a leaf fn or
- are otherwise confused. */
- frame_fp = -1;
- }
- }
-
- /* The locals are relative to the FP (whether it exists as an allocated
- register, or just as an assumed offset from the SP) */
- fi->locals_pointer = frame_fp;
-
- /* The arguments are just above the SP as it was before we adjusted it
- on entry. */
- fi->args_pointer = frame_sp - sp_offset;
-
- /* Now that we know the SP value used by the prologue, we know where
- it saved all the registers. */
- for (src = 0; src < 32; src++)
- if (must_adjust[src])
- fsr->regs[src] += frame_sp;
-
- /* The saved value of the SP is always known. */
- /* (we hope...) */
- if (fsr->regs[SP_REGNUM] != 0
- && fsr->regs[SP_REGNUM] != frame_sp - sp_offset)
- fprintf(stderr, "Bad saved SP value %x != %x, offset %x!\n",
- fsr->regs[SP_REGNUM],
- frame_sp - sp_offset, sp_offset);
-
- fsr->regs[SP_REGNUM] = frame_sp - sp_offset;
-
- return (ip);
- }
-
- /* Given an ip value corresponding to the start of a function,
- return the ip of the first instruction after the function
- prologue. */
-
- CORE_ADDR
- skip_prologue (ip)
- CORE_ADDR (ip);
- {
- struct frame_saved_regs saved_regs_dummy;
- struct symtab_and_line sal;
- CORE_ADDR limit;
-
- sal = find_pc_line (ip, 0);
- limit = (sal.end) ? sal.end : 0xffffffff;
-
- return (examine_prologue (ip, limit, (FRAME_ADDR) 0, &saved_regs_dummy,
- (struct frame_info *)0 ));
- }
-
- /* Put here the code to store, into a struct frame_saved_regs,
- the addresses of the saved registers of frame described by FRAME_INFO.
- This includes special registers such as pc and fp saved in special
- ways in the stack frame. sp is even more special:
- the address we return for it IS the sp for the next frame.
-
- We cache the result of doing this in the frame_cache_obstack, since
- it is fairly expensive. */
-
- void
- frame_find_saved_regs (fi, fsr)
- struct frame_info *fi;
- struct frame_saved_regs *fsr;
- {
- register CORE_ADDR next_addr;
- register CORE_ADDR *saved_regs;
- register int regnum;
- register struct frame_saved_regs *cache_fsr;
- extern struct obstack frame_cache_obstack;
- CORE_ADDR ip;
- struct symtab_and_line sal;
- CORE_ADDR limit;
-
- if (!fi->fsr)
- {
- cache_fsr = (struct frame_saved_regs *)
- obstack_alloc (&frame_cache_obstack,
- sizeof (struct frame_saved_regs));
- bzero (cache_fsr, sizeof (struct frame_saved_regs));
- fi->fsr = cache_fsr;
-
- /* Find the start and end of the function prologue. If the PC
- is in the function prologue, we only consider the part that
- has executed already. */
-
- ip = get_pc_function_start (fi->pc);
- sal = find_pc_line (ip, 0);
- limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc;
-
- /* This will fill in fields in *fi as well as in cache_fsr. */
- examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
- }
-
- if (fsr)
- *fsr = *fi->fsr;
- }
-
- /* Return the address of the locals block for the frame
- described by FI. Returns 0 if the address is unknown.
- NOTE! Frame locals are referred to by negative offsets from the
- argument pointer, so this is the same as frame_args_address(). */
-
- CORE_ADDR
- frame_locals_address (fi)
- struct frame_info *fi;
- {
- register FRAME frame;
- struct frame_saved_regs fsr;
- CORE_ADDR ap;
-
- if (fi->args_pointer) /* Cached value is likely there. */
- return fi->args_pointer;
-
- /* Nope, generate it. */
-
- get_frame_saved_regs (fi, &fsr);
-
- return fi->args_pointer;
- }
-
- /* Return the address of the argument block for the frame
- described by FI. Returns 0 if the address is unknown. */
-
- CORE_ADDR
- frame_args_address (fi)
- struct frame_info *fi;
- {
- register FRAME frame;
- struct frame_saved_regs fsr;
- CORE_ADDR ap;
-
- if (fi->args_pointer) /* Cached value is likely there. */
- return fi->args_pointer;
-
- /* Nope, generate it. */
-
- get_frame_saved_regs (fi, &fsr);
-
- return fi->args_pointer;
- }
-
- /* Return the saved PC from this frame.
-
- If the frame has a memory copy of SRP_REGNUM, use that. If not,
- just use the register SRP_REGNUM itself. */
-
- CORE_ADDR
- frame_saved_pc (frame)
- FRAME frame;
- {
- return read_next_frame_reg(frame, SRP_REGNUM);
- }
-
-
- #if TARGET_BYTE_ORDER != HOST_BYTE_ORDER
- you lose
- #else /* Host and target byte order the same. */
- #define SINGLE_EXP_BITS 8
- #define DOUBLE_EXP_BITS 11
- int
- IEEE_isNAN(fp, len)
- int *fp, len;
- /* fp points to a single precision OR double precision
- * floating point value; len is the number of bytes, either 4 or 8.
- * Returns 1 iff fp points to a valid IEEE floating point number.
- * Returns 0 if fp points to a denormalized number or a NaN
- */
- {
- int exponent;
- if (len == 4)
- {
- exponent = *fp;
- exponent = exponent << 1 >> (32 - SINGLE_EXP_BITS - 1);
- return ((exponent == -1) || (! exponent && *fp));
- }
- else if (len == 8)
- {
- exponent = *(fp+1);
- exponent = exponent << 1 >> (32 - DOUBLE_EXP_BITS - 1);
- return ((exponent == -1) || (! exponent && *fp * *(fp+1)));
- }
- else return 1;
- }
- #endif /* Host and target byte order the same. */
-
- static int
- pushed_size (prev_words, v)
- int prev_words;
- struct value *v;
- {
- switch (TYPE_CODE (VALUE_TYPE (v)))
- {
- case TYPE_CODE_VOID: /* Void type (values zero length) */
-
- return 0; /* That was easy! */
-
- case TYPE_CODE_PTR: /* Pointer type */
- case TYPE_CODE_ENUM: /* Enumeration type */
- case TYPE_CODE_INT: /* Integer type */
- case TYPE_CODE_REF: /* C++ Reference types */
- case TYPE_CODE_ARRAY: /* Array type, lower bound zero */
-
- return 1;
-
- case TYPE_CODE_FLT: /* Floating type */
-
- if (TYPE_LENGTH (VALUE_TYPE (v)) == 4)
- return 1;
- else
- /* Assume that it must be a double. */
- if (prev_words & 1) /* at an odd-word boundary */
- return 3; /* round to 8-byte boundary */
- else
- return 2;
-
- case TYPE_CODE_STRUCT: /* C struct or Pascal record */
- case TYPE_CODE_UNION: /* C union or Pascal variant part */
-
- return (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4);
-
- case TYPE_CODE_FUNC: /* Function type */
- case TYPE_CODE_SET: /* Pascal sets */
- case TYPE_CODE_RANGE: /* Range (integers within bounds) */
- case TYPE_CODE_PASCAL_ARRAY: /* Array with explicit type of index */
- case TYPE_CODE_MEMBER: /* Member type */
- case TYPE_CODE_METHOD: /* Method type */
- /* Don't know how to pass these yet. */
-
- case TYPE_CODE_UNDEF: /* Not used; catches errors */
- default:
- abort ();
- }
- }
-
- static void
- store_parm_word (address, val)
- CORE_ADDR address;
- int val;
- {
- write_memory (address, &val, 4);
- }
-
- static int
- store_parm (prev_words, left_parm_addr, v)
- unsigned int prev_words;
- CORE_ADDR left_parm_addr;
- struct value *v;
- {
- CORE_ADDR start = left_parm_addr + (prev_words * 4);
- int *val_addr = (int *)VALUE_CONTENTS(v);
-
- switch (TYPE_CODE (VALUE_TYPE (v)))
- {
- case TYPE_CODE_VOID: /* Void type (values zero length) */
-
- return 0;
-
- case TYPE_CODE_PTR: /* Pointer type */
- case TYPE_CODE_ENUM: /* Enumeration type */
- case TYPE_CODE_INT: /* Integer type */
- case TYPE_CODE_ARRAY: /* Array type, lower bound zero */
- case TYPE_CODE_REF: /* C++ Reference types */
-
- store_parm_word (start, *val_addr);
- return 1;
-
- case TYPE_CODE_FLT: /* Floating type */
-
- if (TYPE_LENGTH (VALUE_TYPE (v)) == 4)
- {
- store_parm_word (start, *val_addr);
- return 1;
- }
- else
- {
- store_parm_word (start + ((prev_words & 1) * 4), val_addr[0]);
- store_parm_word (start + ((prev_words & 1) * 4) + 4, val_addr[1]);
- return 2 + (prev_words & 1);
- }
-
- case TYPE_CODE_STRUCT: /* C struct or Pascal record */
- case TYPE_CODE_UNION: /* C union or Pascal variant part */
-
- {
- unsigned int words = (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4);
- unsigned int word;
-
- for (word = 0; word < words; word++)
- store_parm_word (start + (word * 4), val_addr[word]);
- return words;
- }
-
- default:
- abort ();
- }
- }
-
- /* This routine sets up all of the parameter values needed to make a pseudo
- call. The name "push_parameters" is a misnomer on some archs,
- because (on the m88k) most parameters generally end up being passed in
- registers rather than on the stack. In this routine however, we do
- end up storing *all* parameter values onto the stack (even if we will
- realize later that some of these stores were unnecessary). */
-
- #define FIRST_PARM_REGNUM 2
-
- void
- push_parameters (return_type, struct_conv, nargs, args)
- struct type *return_type;
- int struct_conv;
- int nargs;
- value *args;
- {
- int parm_num;
- unsigned int p_words = 0;
- CORE_ADDR left_parm_addr;
-
- /* Start out by creating a space for the return value (if need be). We
- only need to do this if the return value is a struct or union. If we
- do make a space for a struct or union return value, then we must also
- arrange for the base address of that space to go into r12, which is the
- standard place to pass the address of the return value area to the
- callee. Note that only structs and unions are returned in this fashion.
- Ints, enums, pointers, and floats are returned into r2. Doubles are
- returned into the register pair {r2,r3}. Note also that the space
- reserved for a struct or union return value only has to be word aligned
- (not double-word) but it is double-word aligned here anyway (just in
- case that becomes important someday). */
-
- switch (TYPE_CODE (return_type))
- {
- case TYPE_CODE_STRUCT:
- case TYPE_CODE_UNION:
- {
- int return_bytes = ((TYPE_LENGTH (return_type) + 7) / 8) * 8;
- CORE_ADDR rv_addr;
-
- rv_addr = read_register (SP_REGNUM) - return_bytes;
-
- write_register (SP_REGNUM, rv_addr); /* push space onto the stack */
- write_register (SRA_REGNUM, rv_addr);/* set return value register */
- }
- }
-
- /* Here we make a pre-pass on the whole parameter list to figure out exactly
- how many words worth of stuff we are going to pass. */
-
- for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++)
- p_words += pushed_size (p_words, value_arg_coerce (args[parm_num]));
-
- /* Now, check to see if we have to round up the number of parameter words
- to get up to the next 8-bytes boundary. This may be necessary because
- of the software convention to always keep the stack aligned on an 8-byte
- boundary. */
-
- if (p_words & 1)
- p_words++; /* round to 8-byte boundary */
-
- /* Now figure out the absolute address of the leftmost parameter, and update
- the stack pointer to point at that address. */
-
- left_parm_addr = read_register (SP_REGNUM) - (p_words * 4);
- write_register (SP_REGNUM, left_parm_addr);
-
- /* Now we can go through all of the parameters (in left-to-right order)
- and write them to their parameter stack slots. Note that we are not
- really "pushing" the parameter values. The stack space for these values
- was already allocated above. Now we are just filling it up. */
-
- for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++)
- p_words +=
- store_parm (p_words, left_parm_addr, value_arg_coerce (args[parm_num]));
-
- /* Now that we are all done storing the parameter values into the stack, we
- must go back and load up the parameter registers with the values from the
- corresponding stack slots. Note that in the two cases of (a) gaps in the
- parameter word sequence causes by (otherwise) misaligned doubles, and (b)
- slots correcponding to structs or unions, the work we do here in loading
- some parameter registers may be unnecessary, but who cares? */
-
- for (p_words = 0; p_words < 8; p_words++)
- {
- write_register (FIRST_PARM_REGNUM + p_words,
- read_memory_integer (left_parm_addr + (p_words * 4), 4));
- }
- }
-
- void
- pop_frame ()
- {
- error ("Feature not implemented for the m88k yet.");
- return;
- }
-
- void
- collect_returned_value (rval, value_type, struct_return, nargs, args)
- value *rval;
- struct type *value_type;
- int struct_return;
- int nargs;
- value *args;
- {
- char retbuf[REGISTER_BYTES];
-
- bcopy (registers, retbuf, REGISTER_BYTES);
- *rval = value_being_returned (value_type, retbuf, struct_return);
- return;
- }
-
- #if 0
- /* Now handled in a machine independent way with CALL_DUMMY_LOCATION. */
- /* Stuff a breakpoint instruction onto the stack (or elsewhere if the stack
- is not a good place for it). Return the address at which the instruction
- got stuffed, or zero if we were unable to stuff it anywhere. */
-
- CORE_ADDR
- push_breakpoint ()
- {
- static char breakpoint_insn[] = BREAKPOINT;
- extern CORE_ADDR text_end; /* of inferior */
- static char readback_buffer[] = BREAKPOINT;
- int i;
-
- /* With a little bit of luck, we can just stash the breakpoint instruction
- in the word just beyond the end of normal text space. For systems on
- which the hardware will not allow us to execute out of the stack segment,
- we have to hope that we *are* at least allowed to effectively extend the
- text segment by one word. If the actual end of user's the text segment
- happens to fall right at a page boundary this trick may fail. Note that
- we check for this by reading after writing, and comparing in order to
- be sure that the write worked. */
-
- write_memory (text_end, &breakpoint_insn, 4);
-
- /* Fill the readback buffer with some garbage which is certain to be
- unequal to the breakpoint insn. That way we can tell if the
- following read doesn't actually succeed. */
-
- for (i = 0; i < sizeof (readback_buffer); i++)
- readback_buffer[i] = ~ readback_buffer[i]; /* Invert the bits */
-
- /* Now check that the breakpoint insn was successfully installed. */
-
- read_memory (text_end, readback_buffer, sizeof (readback_buffer));
- for (i = 0; i < sizeof (readback_buffer); i++)
- if (readback_buffer[i] != breakpoint_insn[i])
- return 0; /* Failed to install! */
-
- return text_end;
- }
- #endif
-